An Industrial-Robots Suited Input Shaping Control Scheme

نویسندگان

  • Amine Kamel
  • Friedrich Lange
  • Gerd Hirzinger
چکیده

Compliance in robot mounted force/torque sensors is useful for soft mating of parts in many assembly tasks. Nevertheless, it generates nearly undamped oscillations when moving a heavy end-effector in free space. In this paper, input shaping control is investigated to damp such unwanted flexible modes. However, the conventional method presents a major drawback: To eliminate the oscillatory dynamics, the desired motion profiles have to be shaped and thus modified. This means that although the unwanted vibrations are damped, the robot motion does not meet the desired one. In this paper we first review the conventional input shaping technique. Second we show how the mentioned problem may be fixed in the design phase by discretizing the filter and by using a predictive approach that compensates the shaped signals time delay and minimizes the resulting control error. Simulation results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Varying Input Shaping Technique Applied to Vibration Reduction of An Industrial Robot - Intelligent Robots and Systems, 1999. IROS '99. Proceedings. 1999 IEEE/RSJ International Conferenc

I t is widely and frequently observed that industrial robots conducting fas t mot ion involve serious residual vibration, the period of which varies with t ime. T o this problem, this paper presents a practical solution by providing a practical design and application of time-varying input shaping technique ( T V I S T ) for a n industrial robot. T o suppress the tame-varying vibration, at first...

متن کامل

Time-varying input shaping technique applied to vibration reduction of an industrial robot

It is widely and frequently observed that industrial robots conducting fast motion involve serious residual vibration, the period of which varies with time. To address this time-varying residual vibration problem, this paper presents a practical solution based on a time-varying input shaping technique (TVIST). First, to suppress the time-varying vibration, a guideline for designing a practical ...

متن کامل

An Alternative Stability Proof for Direct Adaptive Function Approximation Techniques Based Control of Robot Manipulators

This short note points out an improvement on the robust stability analysis for electrically driven robots given in the paper. In the paper, the author presents a FAT-based direct adaptive control scheme for electrically driven robots in presence of nonlinearities associated with actuator input constraints. However, he offers not suitable stability analysis for the closed-loop system. In other w...

متن کامل

An Alternative Stability Proof for Direct Adaptive Function Approximation Techniques Based Control of Robot Manipulators

This short note points out an improvement on the robust stability analysis for electrically driven robots given in the paper. In the paper, the author presents a FAT-based direct adaptive control scheme for electrically driven robots in presence of nonlinearities associated with actuator input constraints. However, he offers not suitable stability analysis for the closed-loop system. In other w...

متن کامل

Control of Flexible Link Robot using a Closed Loop Input-Shaping Approach

This paper is has addressed the Single Flexible Link Robot. The dynamical model is derived using Euler-Lagrange equation and then a proper controller is designed to suppress a  vibration based-on Input-Shaping (IS) method. But, IS control method is an open loop strategy. Due to the weakness of open loop control systems, a closed loop IS control system is proposed. The achieved closed loop c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008